Local Existence and Uniqueness for Exterior Static Vacuum Einstein Metrics

نویسنده

  • MICHAEL T. ANDERSON
چکیده

We study solutions to the static vacuum Einstein equations on domains of the form M ' R \B with prescribed Bartnik data (γ,H) on the inner boundary ∂M . It is proved that for any smooth boundary data (γ,H) close to standard round data on the unit sphere (γ+1, 2), there exists a unique asymptotically flat solution of the static vacuum Einstein equations realizing the boundary data (γ,H) which is close to the standard flat solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Static Vacuum Einstein Metrics and the Bartnik Quasi-local Mass

We analyse the issue of uniqueness of solutions of the static vacuum Einstein equations with prescribed ‘geometric’ or Bartnik boundary data. Large classes of examples are constructed where uniqueness fails. We then discuss the implications of this behavior for the Bartnik quasi-local mass. A variational characterization of Bartnik boundary data is also given.

متن کامل

Static Vacuum Einstein Metrics on Bounded Domains

We study the existence and uniqueness of solutions to the static vacuum Einstein equations in bounded domains, satisfying the Bartnik boundary conditions of prescribed metric and mean curvature on the boundary.

متن کامل

On the Bartnik extension problem for the static vacuum Einstein equations

We develop a framework for understanding the existence of asymptotically flat solutions to the static vacuum Einstein equations on M = R \ B with geometric boundary conditions on ∂M ' S. A partial existence result is obtained, giving a partial resolution of a conjecture of Bartnik on such static vacuum extensions. The existence and uniqueness of such extensions is closely related to Bartnik’s d...

متن کامل

The Static Extension Problem in General Relativity

We prove the existence of asymptotically flat solutions to the static vacuum Einstein equations on M = R \B with prescribed metric γ and mean curvature H on ∂M ≃ S, provided H > 0 and H has no critical points where the Gauss curvature Kγ ≤ 0. This gives a partial resolution of a conjecture of Bartnik on such static vacuum extensions. The existence and uniqueness of such extensions is closely re...

متن کامل

Scalar Curvature, Metric Degenerations and the Static Vacuum Einstein Equations on 3-manifolds, I

In this paper, we prove that degenerations of sequences of Yamabe metrics on 3-manifolds are modeled or described by solutions to the static vacuum Einstein equations. One underlying motivation to understand such degenerations is the question of existence of constant curvature metrics on 3-manifolds, in other words with the geometrization conjecture of Thurston [Th2]. An approach towards resolv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014